
1

So, What Actually is a Cloud?

Dan Stanzione
Deputy Director, TACC

UT-Austin

Originally from Arizona State Cloud Computing Course, Spring 2009

(Jointly taught by Stanzione, Santanam, and Sannier)

2

You’ve heard about what clouds can *do*, and how
they change the game. But what, technically

speaking, are they?

• Terminology

• Some definitions of a cloud (from others)

• A working definition, and some history and
background

3

Some Terminology:
• Cloud Computing
• Grid Computing
• Utility Computing
• Software As A Service (SaaS)
• On-demand Computing
• Distributed Computing
• Cluster Computing
• Parallel Computing
• High Performance Computing
• Virtual Computing (Virtualization)
• Web Services
• A little older:

– Client-server computing
– Thin clients

• All these terms are batted around in trade publication, but what do they
mean?
– If someone asked you to design/deploy a cloud, a cluster, and a grid,

what would you order, and what software would you run on it?

4

Unfortunately, there aren’t very many universally
accepted definitions to those terms

• Although I believe some are clearly wrong, and some
are more “right” than others.

• So, we’ll try and answer this question in a few ways:
- By providing a framework and some background
- By looking at definitions from others
- Then by providing definitions of our own, from the

more concrete to the slightly more fuzzy.

5

A Framework for Talking About
Computing

• Unlike most scientific disciplines, computer science lacks
firm taxonomies for discussing computer systems.
– Speaking as a computer scientist, I put this in the list of things that

differentiate “computer science” from “real science”… can’t simply fall
back to first principles; there are no Maxwell’s Equations of Computer
Science, nothing has a latin name.

– As a result, almost every discussion of computer systems, even
among most faculty, is hopelessly confused.

– Because computing also has a trade press and a market, things are
much, much worse. Terms are rapidly corrupted, bent, misused and
horribly abused.

• There is no Dr. Dobb’s Journal of Chemical Engineering or
Molecular Biology, and no Microsoft of High Energy Physics
offering the myFusion ™ home thermonuclear reactor with free
bonus Bose-Einstein Condensates Beta!.

6

Computing 1.0 – John Von Neumann, June
30th, 1945

• The dotted line box defined the modern notion of a
“computer”

• The connection between memory and processor is known
as the “Von Neumann Bottleneck”; more on that later

Memory

Processor

Storage
UserOther I/O

(Keyboard/monitor)

7

Computing 2.0
a.k.a.

Hey, maybe there is more than one computer in the world!
a.k.a

Maybe Computers shouldn’t just talk to people, they should talk to each
other!

Computer

Fileserver
(another computer)

User

Network

To solve my problem, I might need *more than one* computer to do something.
In this model, one computer provides a service to another (early on, this usually
meant making files available).
One might argue this is where the concept of a reliable computer system ended once and for all…

8

Computing 2.1 Distributed Computing
Environments

• Computing 2.0 kicked off the concept of having multiple computers
interact to perform tasks, or groups of tasks, for users.

• This notion rapidly got extended from fileservers to the concept of the
remote procedure call, which is truly the parent concept of all modern
distributed computing

• The basic idea of RPC is that code running on one computer makes a
call to, and receives a response from, code running on another
computer. The client-server architecture largely grew from this concept.

• This seems simple, but was a great leap forward in programming model;
one crucial, non-obvious side effect was the introduction of concurrency;
with more than one computer, several things can happen at the same
time.

9

Computing 2.1 Distributed Computing
Environments

Computer
(Client)
…
Value = rpc.getAnswer();
Do_other_stuff(value);
…

Computer
(Server)

…
getanswer() {
 …
 return value;
 }

10

The Fork() in the Road
• From about the time distributed computing environments existed,

computer systems forked into two (-ish) camps, both dealing with
limitations of the computer system as we know it.

– In the *technical* computing community (science and engineering
simulation), the basic problem was that the processors were too slow
to solve enough problems.

– In the *enterprise* computing community (business processes, offices
and classrooms, etc.) the problem was that the servers couldn’t
satisfy enough clients, and couldn’t do it reliably enough.

• Both attacked the problem through concurrency.

11

The Fork() in the Road
• The S&E computing community began down the road of

supercomputing, and eventually settled on parallel
computing as the answer, resulting in today’s high
performance computing systems

• The enterprise computing community began down the path of
failover and redundancy, resulting in today’s massively parallel
utility computing systems, of which the ultimate evolution
may be the cloud.
– While they went different paths, they (sort of) ended up in the same

place, but with very different worldviews.
– As a result, there are a few key technical differences between the

modern cloud and supercomputer; despite their many similarities, they
solve very different problems.

12

Fork #1: Scientific Computing
• The fundamental problem: Simulations are too big, and either take too long

or don’t fit on the machine.
– Solution attempt #1: The supercomputer, 70s and 80s style.

• Solve the problem at the circuit level: build faster processors
• Ran into barriers of engineering cost, and economies of scale.

– Solution attempt #2:
• If one processor delivers X performance, wouldn’t 2 processors deliver 2X

performance? (Well, no, but it’s a compelling idea and we can come close, often).

– Parallel Computing is the core concept of all modern high performance
computing systems, and is the simple idea that:

• More than one processor can be used to perform a single simulation (or
program).

– By contrast, distributed computing involves multiple computers doing
different tasks.

13

So, supercomputers now…
• Parallelism is a simple idea, but in practice, doing it effectively

has been a huge challenge shaping systems and software for
decades…

• The term supercomputer is no longer used to reference any
particular single architecture, but rather is used for the systems
that deliver the highest performance, defined in this context as:
– Delivering the largest number of floating point operations per

second (FLOPS) to the solution of a single problem or a single
program

– (hence, Google’s system does not appear on the top 500
supercomputer list, as it solves many small problems, but can’t be
focused on one large one).

14

Granularity
• An important factor in determining how well applications run on any

parallel computer of any type is the granularity of the problem.
• Simply put granularity is the measure of how much work you do

computing before needing to communicate with another processor
(or file, or network).
– A “coarse grain” application is loosely coupled, i.e. can do a lot of work

before synchronizing with anyone else (think SETI@Home; download
some data, crunch for an hour, send the result).

– A “fine grain” application does only a few operations before needing to
synchronize… like the finite difference example in an earlier slide.

• In general, for parallel computer design, we care a *lot* about
solving fine grain problems, as most S&E simulations (and true
parallel codes) are pretty fine grain.

15

Notes About Cluster Architecture
(distinguishing from Clouds)

• Because clusters are about parallel computing, lots of investment
goes into the network

– Latency on Saguaro between any two nodes: 2.6 microseconds
– Latency between my desk and www.asu.edu: 4,251 microseconds
– 4.2 ms is fast enough for humans, but not for parallel codes).

• Because clusters run one large job, the storage system usually
focuses (at considerable expense) on delivering bandwidth from one
big file to all compute nodes.

• Keep these two things in mind
• Clusters, supercomputers, and any other architecture focused on

solving one large problem really fast is what typically falls in the
category High Performance Computing

16

Cluster Computing
• In the scientific computing community, whenever we build

one of these parallel systems, particularly in the distributed
memory or hybrid model, and we build it using *primarily*
commodity components, we call this a cluster computer.

• Officially, it’s called a Beowulf Cluster, if:
– It’s built from commodity components
– It’s used to solve problems in parallel
– It’s system software is open source
(This is directly from the guy who coined the phrase “Beowulf Cluster”)

• Unofficially, any large deployment of identical machines with identical software
images now gets called a cluster…

17

Fork #2: High Availability
• While the technical computing folks were delivering

parallel computers, enterprise computing folks were
evolving their own distributed systems around a
separate set of problems:
– Servers must handle many clients

• Database servers processing thousands of transactions
• Web servers with millions of hits
• Note in these environments, it’s effectively a lot of little tasks

that run independently, though there still is synchronization
(e.g. the database must be consistent, but one query doesn’t
talk to another).

– If one server handles many clients, that server is pretty
important.

18

High Availability

• “Cluster Computing” got its start in the enterprise
world in a failover pair.
– If one server may fail, design an identical one that can

pick up it’s load.
– A Cisco firewall “Cluster” means two machines (the

Ranger HPC cluster has 63,000 processors).

Client

Server Network

Backup Server

19

Load Balancing
• Database servers drove SMP designs for quite a while (as shared

memory was useful for maintaining a consistent DB state).

• Eventually, they hit the same wall scientific users did
– Machines don’t have enough bandwidth, but two should have more than

one.
– If a failover pair has a second server that does the same job, why not use it

all the time? Why not have more than two?

Client

Server

Load Balancer
Server

Server

Server

20

Enterprise Concurrency

• In this model, the *servers* don’t synchronize
much, but the *storage* does.
– So, at considerable expense, in the enterprise

world, the SAN (Storage Area Network) came into
existence, to allow concurrent servers the ability to
talk to coherent, shared storage.

– (Remember this for a few slides too).

21

Enterprise writ large

• As the enterprise architecture evolved, the
endpoint became the deployment of massive
“clusters”
– Large sets of servers, with similar hardware
– Maybe many software images
– Network latency not an issue
– Coherent storage more important than fast storage

(and focus on small transactions).

22

Where do Grids fit in?

• Grid computing emerged from the
scientific/academic computing community in the
late 90’s.
– The fundamental idea is that computing (cycles)

should be a commodity, delivered like the power grid:
• Plug in anywhere and get the same thing
• No one cares where the power comes from

23

Grid Computing
• The realization of grid was a software layer which:

– Provided access to a set of resources with no central
administrative control

– Allowed single authorization to all resources
– Transparently (?) moved work among resources in the grid.

• In practice, a few more restrictions.

• Globus, Condor, World Community Grid, Open Science
Grid among largest examples.

24

Grid in Practice
• “The Grid”, at least the Globus version, eventually merged with

Web Services (SOAP). Much in common:
– Need to pass credentials
– Need to discover resources dynamically
– Need for a standard interface to start work and receive results.

• Grid was hyped for about 5 years; the word came to mean just
about anything connected to a network (Sun Grid Engine, for
instance, manages clusters; since it’s central administrative
control, it’s not a grid).

• Grid for business was replaced by web services, since really
they wanted seamless access to distributed systems, not to
share resources.

• Cloud hype has now effectively killed grid hype, because most
folks can’t tell the difference…

25

Grid Limitations
• Grids solve some problems really well, but…

– Code must move from users to random places in the grid
– *Data* must move from users to random places in the grid
– Parallel simulation is all about latency; grids care not at all about

latency.

• Grids are great when:
– You have problems that are coarse grain (little need for

synchronization)
– You have problems that *don’t* need a lot of data
– The LHC (large hadron collider) will fill the world’s grid for years:

• Take a small amount of LHC data, process it on 1 processor for several
hours, repeat millions of times; perfect grid problem.

• One problem with volunteer grids is the quality-of-service is low
and unpredictable. Hence there soon came…

26

High Throughput Computing
• HTC is about turning around lots of smaller

processing tasks quickly. HTC systems solve grid-
friendly problems, but in a predictable QOS way.

• Architecturally, HTC is a cheap cluster (or a
dedicated grid); by lots of identical servers with a
cheap network, cheap shared storage, and solve
many non-parallel problems on it over and over.
– E.g. have 5,000 students submit Matlab runs repeatedly.

• Much cheaper than HPC systems, but can’t solve
parallel problems well.

27

Software as a Service
• Technically, SaaS is a pretty simple concept

– It’s the evolution of client-server to its logical end:
• Server provides the application
• Client requests application, gets interface from server, user

interacts with app through client.

• The genius of SaaS isn’t technical, it’s the business model:
– Your product is not a shrink-wrapped box, it’s a service you

purchase again and again.
– Think carefully… what’s Microsoft’s business model if they ever

write a perfect version of Windows and Office that never needs an
upgrade? It’s not like software wears out…

– SaaS turns a one time purchase into a long time
subscription/revenue stream

28

Virtualization
• When writing client-server apps, web service apps, SaaS apps, etc., you sure

seem to need a lot of servers.
– Turns out, for many software models, the computer itself (the server) is a

pretty handy unit of abstraction.
• You don’t need a *physical* computer, you just need something that

behaves like one; has a name, has an OS, has memory and storage,
runs your code.

– We haven’t figured out higher level language abstractions in programming to
make code portable and migratable, but we *can* just abstract the entire
computer

• Virtual servers do just that…
• One advantage of this is you can consolidate servers, but much more important,

you don’t need a *specific* server.
– Run on any hardware, without needing to customize/reinstall/debug
– Run any place
– Move when the hardware fails

• So, now that virtualization works well, the next logical step is:

29

Utility Computing
• OK, virtual servers run all your apps. No matter how

you built them, they all need the server abstraction.
The hardware is generic (pretty much an HTC
cluster).

• So, let’s build a market for servers
– Build massive datacenters
– Sell “servers” by the hour, on demand, at varying scales
– Think early versions of Amazon’s Elastic Compute Cloud

• Still can’t do big parallel problems, or big data
problems

30

Umm, wasn’t this talk about Clouds?

• So, now we live in a SaaS, Web Service, load
balanced, failover world, where servers are
virtual and offered through utility computing
as a commodity.

• Is this a cloud?

• Most would say yes…

• I still say no.

• Let’s hear from others…

31

Cloud definitions from the internet
cloud…

• From “Twenty-one experts define clouds”:

• "Cloud computing is one of those catch all buzz words that tries to
encompass a variety of aspects ranging from deployment, load balancing,
provisioning, business model and architecture (like Web2.0). For me the
simplest explanation for cloud computing is describing it as, "internet
centric software."

• "I view cloud computing as a broad array of web-based services aimed at
allowing users to obtain a wide range of functional capabilities on a 'pay-as-
you-go' basis...”
- Jeff Kaplan

• "Clouds are vast resource pools with on-demand resource allocation.
…Clouds are virtualized…Clouds tend to be priced like utilities”
- Jan Pritzker

32

Cloud definitions from the internet
cloud…

• "I think ‘Clouds’ are the next hype-term for the next year or two. People
are coming to grips with Virtualization and how it reshapes IT, creates
service and software based models, and in many ways changes a lot of
the physical layer we are used to. Clouds will be the next
transformation over the next several years, building off of the software
models that virtualization enabled."
- Douglas Gourlay

• "The way I understand it, “cloud computing” refers to the bigger
picture…basically the concept of using the internet to allow people to
access services. According to Gartner, those services must be
'massively scalable' to qualify as true 'cloud computing'. So according
to that definition, every time I log into Facebook, or search for flights
online, I am taking advantage of cloud computing."

33

Cloud definitions from the internet
cloud…

• "Clouds are the new Web 2.0. Nice marketing shine
on top of existing technology. Remember back when
every company threw some ajax on their site and
said “Ta da! We’re a web 2.0 company now!”? Same
story, new buzz word.

- Damon Edwards

• SaaS is one consumer facing usage of cloud
computing… Put simply cloud computing is the
infrastructural paradigm shift that enables the
ascension of SaaS."
- Ben Kepes

34

So, clouds are big piles of other people’s
machines, plus virtualization.

I think we can do a little better… let’s dig a little deeper into the cloud that
really mattered first.

35

The Google Cloud
• Cloud didn’t make sense for me until I understood what Google

did, and how it really changed things.

• Yes, Google’s cloud is a big, enormous pile of servers.

• No, they aren’t virtual, but they figured out early on that no
server would be fast enough or reliable, so while not virtual, they
did make them dispensable (any one can fail and it’s not a
problem).

• What they added to this equation, and everyone else followed
on, is two key innovations that make big piles of servers solve
big problems.

36

Innovation #1: The storage approach

• Once upon a time (1986), a guy named Danny Hillis (Thinking
Machines) decided the way to solve the Von Neumann bottleneck
(remember that?) was to build “processor in memory”; essentially,
distribute processing power throughout all the RAM, to give you lots of
concurrent access points.

• Google figured out that at “internet-scale”, the real bottleneck isn’t to
memory, it’s to the massive datasets *on disk*. They built “processor-
in-storage”
– Give each server some storage
– Spread data across lots of servers
– Don’t build one big shared filesystem.
– Do what you will do to the data *before* you move it off the server
– The magic is in their distributed filesystem, borrowing concepts from

parallel filesystems, but using the local processors.

37

Innovation #2:
• Google figured out that “server” wasn’t the abstraction you need,

because to scale up client server apps, you need to be able to add
servers; lots of them; without changing the code.

• Google adopted a map-reduce strategy in conjunction with their
filesystem:
– Create tasks that operate on data
– Move the tasks to the servers where the data is
– As you add more data, create more copies of the code
– Send results only at the end, without ever moving most of the data.

• This new, higher level API changes everything…

• The Google cloud is not about computation in the traditional sense, it’s
about solving the loosely coupled data-intensive problems that HPC
systems do not.

38

Summing Up…

So what’s a Cloud?

39

Characteristics We’re Sure About in
Clouds

• Users don’t physically touch them
– Remote

• They can do big things; some notion of
“internet scale”
– Scalable

• Clouds can move resources between
applications
– Dynamic

40

Characteristics We Think We’re Sure
About in Clouds

• You don’t use a particular computer, you use
an abstraction of a computer
– Virtual

• They offer an interface with a higher level of
abstraction than a simple server.
– High Level API

• They are focused on loosely synchronized,
coarse grain parallel tasks
– Loosely Coupled

41

Characteristics people might argue with
me about in clouds

• Clouds require a large scale, distributed
storage system that abstracts how data is
distributed and accessed.

• The most important aspect of a cloud is the
way it provides concurrent access to large
data volumes… in essence:
– A cloud isn’t about computing; A cloud *is*

smart data.

42

Cloud Architecture

• Lots of systems

• A storage mechanism that distributes data
among the systems, with no large central
storage

• An API that abstracts systems, and moves
work to data.

43

A Controversial End
• Many people think of clouds as just getting rid of the hardware and

outsourcing your datacenters.

• Clouds can do this, but so can utility computing of virtual servers (it’s
like using an HPC system to solve a grid problem; you’re swatting flies
with a bazooka).

• What HPC did for big simulation, clouds do for big data… and it’s the
dawn of the age of big data! In science, business, and everywhere
else.

• Master the cloud, master large data, world domination will surely
follow.

Let’s figure out how to program them…

44

Some materials adapted from slides by

Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Google Distributed Computing Seminar, 2007

Jimmy Lin, University of Maryland

(licensed under Creation Commons Attribution 3.0 License)

Introduction to Map/Reduce Programming

Raghu Santanam
Adrian Sannier
Dan Stanzione

45

• Quick Introduction to Functional Programming

• Hadoop Map/Reduce Framework

46

• Lambda Calculus
– Developed by Alonzo Church
– A foundation for functional programming

• Functional programming deals exclusively with
functions

• No side effects!
– Variables can only be assigned to once & cannot be

modified
– Thus input data to a function is never changed
– New data is created as output

• This is a big difference from imperative
programming (what you are used to)

47

• ML

• Haskell

• Erlang

• Lisp

• Mathematica

• Prolog

• Erlang is very popular in
Telecom systems

• Developed by Ericsson, it is
now used by major
companies including T-
Mobile, Amazon
(SimpleDB),

• Used in Facebook Chat and
Yahoo (Delicious) as well

48

• Original data is always preserved!

• Order of execution does not matter

• Concurrency issues are handled without special constructs
– No semaphores/synchronizations!
– Thread safe by default!

• Hot deployment (deploy updates at run time) is an easy
possibility

• You can pass functions as arguments

49

• We will use mathematica syntax to show examples

• You can try these on mathematica

• Define function fm and fn as follows:

 fn=Function[{u,v},u^2+v^2]

 fm=Function[{u},fn[u,2*u]]

Input: fn[4,5]
Output: 41

Input: fn[2,2]
Output: 8

Input: fm[2]
Output: 20

Input: fm[fn[2,2]]
Output: ??

Input:
fn[fm[2],fm[fn[2,2]]]
Output: ??

50

• We are assuming you know what a list is…

• Just in case:

• {1,2,3,4,5} is a list

• {abc, def,ghi, jkl} is a list

• {{abc,def},{1,2,3}, {ee,ff}} is a list

51

• Map is a special function that applies the first argument
repeatedly to the second argument and constructs a new list

• Map[f,{2,3,4,5}] {f[2],f[3],f[4],f[5]}

Input: sq = Function[u,u^2]
Input: Map[sq,{1,2,3,4,5}]
Output: {1,4,9,16,25}1

sq

4 9 16 25

1 2 3 4 5

Can this be done in parallel?

sqsqsqsq

52

• Fold[f,x,list]

• Sets an accumulator

• Initial value is x

• Applies f to each element
of the list plus the
accumulator.

• Result is the final value of
the accumulator

• Fold[f,x,{a,b,c}]

• => f[f[f[x,a],b],c]

• Remember fn?

• fn=Function[{u,v},u^2+v^2]

• Fold[fn,0,{0,1,2,3}]

• =>Output ??

53

f f f f f
returned

initial

54

• Map is implicitly parallel
– No side effects; each list element is operated on separately

• Order of application of function does not matter

• So map operations can be parallelized

• The results can be brought together in a fold(reduce)
operation

55

• End Programmer implements interface of two functions:
• map (key, value)

– Outputs
list of (key’’, value’’)

• reduce (key’’’, value list)
List of output value
All keys with the same key’’’ are sent together in the value list
– reduce phase does not start until map phase is completely finished.

56

Data Store

Initial kv pairs

mapmap

Initial kv pairs

map

Initial kv pairs

map

Initial kv pairs

k1, values…

k2, values…
k3, values…

k1, values…

k2, values…
k3, values…

k1, values…

k2, values…
k3, values…

k1, values…

k2, values…
k3, values…

Barrier: aggregate values by keys

reduce

k1, values…

final k1 values

reduce

k2, values…

final k2 values

reduce

k3, values…

final k3 values

57

• Programmer does not have to handle
– work distribution
– Scheduling
– Networking
– Synchronization
– Fault recovery (if a map or reduce node fails)
– Moving data between nodes

58

• Document content:
My first program in map reduce

Hello map reduce program

Map output:

(My 1) (first 1) (program 1) (in 1) (map 1) (reduce 1)

(Hello 1) (map 1) (reduce 1) (program 1)

Reduce output:

(My 1) (first 1) (program 2) (in 1) (map 2)

(reduce 2) (Hello 1)

59

• You want to count the number of occurrences of each word in a set of
documents

map(String input_key, String input_value):

 // input_key: document name

 // input_value: document contents

 for each word w in input_value:

 EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):

 // output_key: a word

 // output_values: a list of counts

 int result = 0;

 for each v in intermediate_values:

 result += ParseInt(v);

 Emit(AsString(result));

60

• Large set of intermediate values

• Lot of shuffling of data

• Sorting and resorting of data

61

• A distributed file system is used to spread the
data across nodes

• Map tasks are sent to the nodes where the data
resides (or on the same rack)
– i.e., move the program not the data!

• If a map node fails, it is restarted on another
node

• Data is replicated on multiple nodes (usually 3)
• If any map node is unusually slow to complete, it

is restarted on another node
– Uses results from first completed map task

62

Dean and Ghemawat,
CACM, 2008.

63

• You implement the Mapper and Reducer
interfaces for your application

• Configure your job
– Set your Mapper’s output key, value types
– Identify your Mapper and Reducer

implementations (and the Combiner, if you want
to)

– Set input and output stream types, file paths

• Run the job

64

• Overall, Mapper implementations are passed the
JobConf for the job via the
JobConfigurable.configure(JobConf) method
– override it to initialize application specific variables

• The framework then calls
map(WritableComparable, Writable,
OutputCollector, Reporter) for each
line/row/record in the InputSplit for that task.

• Output is written through the
OutputCollector.collect(WritableComparable,Writable
)

65

• As with Map, Reducer implementations are
passed the JobConf for the job via the
JobConfigurable.configure(JobConf) method

• The framework then calls
reduce(WritableComparable, Iterator,
OutputCollector, Reporter) method for each <key,
(list of values)> pair in the grouped inputs.

• The output of the reduce task is typically written
to the FileSystem via
OutputCollector.collect(WritableComparable,
Writable).

66

• JobConf can be used to set number of mappers
and reducers
– You can also set the number of reducers to zero, if

needed

• For production applications, one can estimate
good numbers based on datasize
– Or you can leave it to the framework to decide

• You can write a Combiner if you want to reduce
data transferred to Reduce stage
– Executed locally at the map
– Can often be the Reducer itself (E.g., wordcount)

67

A Full Hadoop Sample Code

Note: API’s are still changing fast; this
may or may not work with your version!

68

Headers (I love Java)
package WordCount;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

69

More Setup
/**
 * This is an example Hadoop Map/Reduce application.
 * It reads the text input files, breaks each line into words
 * and counts them. The output is a locally sorted list of words

and the
 * count of how often they occurred.
 *
 * To run: bin/hadoop jar build/hadoop-examples.jar wordcount
 * [-m <i>maps</i>] [-r <i>reduces</i>] <i>in-dir</i>

<i>out-dir</i>
 */
public class WordCount extends Configured implements Tool {

 /**
 * Counts the words in each line.
 * For each line of input, break the line into words and emit

them as
 * (word, 1).

 */

70

Mapper
public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable>

{

 private final static IntWritable one = new
IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable>

output,
 Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 output.collect(word, one);
 }
 }
 }

71

Reducer
 /**
 * A reducer class that just emits the sum of the input values.
 */
 public static class Reduce extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
 }

72

Driver (1)
 /**
 * The main driver for word count map/reduce program.
 * Invoke this method to submit the map/reduce job.
 * @throws IOException When there is communication problems with the
 * job tracker.
 */
 public int run(String[] args) throws Exception {
 JobConf conf = new JobConf(getConf(), WordCount.class);
 conf.setJobName("wordcount");

 // the keys are words (strings)
 conf.setOutputKeyClass(Text.class);
 // the values are counts (ints)
 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(MapClass.class);
 conf.setCombinerClass(Reduce.class);
 conf.setReducerClass(Reduce.class);

73

Driver (2)
 List<String> other_args = new ArrayList<String>();
 for(int i=0; i < args.length; ++i) {
 try {
 if ("-m".equals(args[i])) {
 conf.setNumMapTasks(Integer.parseInt(args[++i]));
 } else if ("-r".equals(args[i])) {
 conf.setNumReduceTasks(Integer.parseInt(args[++i]));
 } else {
 other_args.add(args[i]);
 }
 } catch (NumberFormatException except) {
 System.out.println("ERROR: Integer expected instead of " + args[i]);
 return printUsage();
 } catch (ArrayIndexOutOfBoundsException except) {
 System.out.println("ERROR: Required parameter missing from " +
 args[i-1]);
 return printUsage();
 }
 }
 // Make sure there are exactly 2 parameters left.
 if (other_args.size() != 2) {
 System.out.println("ERROR: Wrong number of parameters: " +
 other_args.size() + " instead of 2.");
 return printUsage();
 }
 FileInputFormat.setInputPaths(conf, other_args.get(0));
 FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));

 JobClient.runJob(conf);
 return 0;
 }

74

See how that’s simpler than MPI?

• Neither do I…

75

Map/Reduce
• No interprocessor communication (other than thru the

really slow filesystem).

• Compelling for algorithms involving large scale
stream processing of massive datasets

• Unlikely to ever solve a fluid dynamics problem

• A good match for the way programming is taught in
modern CS programs (sadly…).

• Could provide a limited form of concurrency “to the
masses”.

